Why Men Take More Risks Than Women
Researchers from HSE University and Max Planck Institute for Human Cognitive and Brain Sciences have discovered how the theta rhythm of the brain and the gender differences in attitudes to risk are linked. In an article published in the journal Frontiers in Neuroscience, the researchers addressed which processes can be explained by knowing this connection.
By transmitting signals, the brain's neurons generate electromagnetic fields. The multiplicity of neurons makes these fields strong enough to be recorded on the surface of the head using magneto- and electroencephalography techniques. The resulting recording of the brain’s electrical activity is divided into frequency bands — brain rhythms, which are designated by Greek letters. We know for each one in which parts of the brain it is generated, in what state the person is in (e.g., at rest or during tasks) and what processes it may be associated with.
Existing research suggests that many differences in behaviour, including attitudes toward risk, can beat least partly explained by individual characteristics of brain activity. On average, women are known to take risks less frequently than men, and experiments have shown a correlation between willingness to take risks and differences in the strength of right and left frontal lobe theta rhythms (frontal theta asymmetry). However, these studies either included only or mostly women, and it remains unclear whether the asymmetry of theta rhythms actually contributes to gender differences in risk-taking.
The authors of the new article set three objectives:
- The first was to determine whether there is a correlation between risk attitudes and frontal theta asymmetry in a sample with more or less equal numbers of male and female subjects.
- The second was to test whether the combined strength of the theta rhythms of both frontal lobes is associated with behaviour under uncertainty (there is already evidence for this).
- The third was to determine whether the neuronal oscillations generated in the anterior cingulate cortex (an area of the brain involved in error monitoring and possibly linked to gender differences in decision-making) correlate with risk-taking.
Thirty-five people took part in the experiment; of these, 15 participants were women. Each participant was asked to undergo a magnetoencephalography and three tests measuring risk-taking and impulsivity. The first test involved selecting a number of boxes (out of 100), each of which offered a monetary reward, but if one of the selected boxes contained a ‘bomb’, the participants lost all their earnings. Each participant was given 30 attempts. The second and third tests were questionnaires: the Barratt Impulsiveness Scale showed how a person assessed his or her own ability to plan and exhibit self-control, while the Domain-Specific Risk-Taking Scale (DOSPERT) showed how willingly a person agreed to a particular risk-taking action and how he or she assessed the possible gains and losses arising from it.
In the boxes test, men showed a higher risk appetite than women (an average of 48 boxes opened versus 40; participants chose fewer boxes on their first try — 44 and 31 out of 100, respectively). Of the questionnaires, only the DOSPERT Benefits scale yielded a similar result (men are more optimistic about the positive outcome of a risky venture); the other tests showed no gender differences. The frontal theta asymmetry was not significantly related to the number of boxes selected in the sample — a positive correlation was evident only among women. The strength of the frontal theta rhythms (and especially the oscillations localized in the anterior cingulate cortex) correlated with results of the game, as well as with subjective assessments of benefits and losses from risky behaviours.
Thus, the researchers suggest that individual variability in the strength of theta rhythms in the anterior cingulate cortex is related to gender differences in assessing the consequences of risky actions and, consequently, attitudes toward risk. It is likely that both the activity of this brain region and risk-taking are influenced by hormone levels such as testosterone.
‘Gender differences in weighing of the potential consequences of decisions may not only affect risk-taking, but also reflect a more fundamental process of emotional responsiveness to environmental stimuli. We speculate that such differences related to hormonal regulation may also influence the prevalence of depression, anxiety and other clinical conditions among women, and we will continue to explore this topic,’ concluded Maria Azanova, the lead author of the article.
See also:
'We Are Creating the Medicine of the Future'
Dr Gerwin Schalk is a professor at Fudan University in Shanghai and a partner of the HSE Centre for Language and Brain within the framework of the strategic project 'Human Brain Resilience.' Dr Schalk is known as the creator of BCI2000, a non-commercial general-purpose brain-computer interface system. In this interview, he discusses modern neural interfaces, methods for post-stroke rehabilitation, a novel approach to neurosurgery, and shares his vision for the future of neurotechnology.
Smoking Habit Affects Response to False Feedback
A team of scientists at HSE University, in collaboration with the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, studied how people respond to deception when under stress and cognitive load. The study revealed that smoking habits interfere with performance on cognitive tasks involving memory and attention and impairs a person’s ability to detect deception. The study findings have been published in Frontiers in Neuroscience.
'Neurotechnologies Are Already Helping Individuals with Language Disorders'
On November 4-6, as part of Inventing the Future International Symposium hosted by the National Centre RUSSIA, the HSE Centre for Language and Brain facilitated a discussion titled 'Evolution of the Brain: How Does the World Change Us?' Researchers from the country's leading universities, along with health professionals and neuroscience popularisers, discussed specific aspects of human brain function.
‘Scientists Work to Make This World a Better Place’
Federico Gallo is a Research Fellow at the Centre for Cognition and Decision Making of the HSE Institute for Cognitive Research. In 2023, he won the Award for Special Achievements in Career and Public Life Among Foreign Alumni of HSE University. In this interview, Federico discusses how he entered science and why he chose to stay, and shares a secret to effective protection against cognitive decline in old age.
'Science Is Akin to Creativity, as It Requires Constantly Generating Ideas'
Olga Buivolova investigates post-stroke language impairments and aims to ensure that scientific breakthroughs reach those who need them. In this interview with the HSE Young Scientists project, she spoke about the unique Russian Aphasia Test and helping people with aphasia, and about her place of power in Skhodnensky district.
Neuroscientists from HSE University Learn to Predict Human Behaviour by Their Facial Expressions
Researchers at the Institute for Cognitive Neuroscience at HSE University are using automatic emotion recognition technologies to study charitable behaviour. In an experiment, scientists presented 45 participants with photographs of dogs in need and invited them to make donations to support these animals. Emotional reactions to the images were determined through facial activity using the FaceReader program. It turned out that the stronger the participants felt sadness and anger, the more money they were willing to donate to charity funds, regardless of their personal financial well-being. The study was published in the journal Heliyon.
Spelling Sensitivity in Russian Speakers Develops by Early Adolescence
Scientists at the RAS Institute of Higher Nervous Activity and Neurophysiology and HSE University have uncovered how the foundations of literacy develop in the brain. To achieve this, they compared error recognition processes across three age groups: children aged 8 to 10, early adolescents aged 11 to 14, and adults. The experiment revealed that a child's sensitivity to spelling errors first emerges in primary school and continues to develop well into the teenage years, at least until age 14. Before that age, children are less adept at recognising misspelled words compared to older teenagers and adults. The study findings have beenpublished in Scientific Reports .
Meditation Can Cause Increased Tension in the Body
Researchers at the HSE Centre for Bioelectric Interfaces have studied how physiological parameters change in individuals who start practicing meditation. It turns out that when novices learn meditation, they do not experience relaxation but tend towards increased physical tension instead. This may be the reason why many beginners give up on practicing meditation. The study findings have been published in Scientific Reports.
Processing Temporal Information Requires Brain Activation
HSE scientists used magnetoencephalography and magnetic resonance imaging to study how people store and process temporal and spatial information in their working memory. The experiment has demonstrated that dealing with temporal information is more challenging for the brain than handling spatial information. The brain expends more resources when processing temporal data and needs to employ additional coding using 'spatial' cues. The paper has been published in the Journal of Cognitive Neuroscience.
Neuroscientists Inflict 'Damage' on Computational Model of Human Brain
An international team of researchers, including neuroscientists at HSE University, has developed a computational model for simulating semantic dementia, a severe neurodegenerative condition that progressively deprives patients of their ability to comprehend the meaning of words. The neural network model represents processes occurring in the brain regions critical for language function. The results indicate that initially, the patient's brain forgets the meanings of object-related words, followed by action-related words. Additionally, the degradation of white matter tends to produce more severe language impairments than the decay of grey matter. The study findings have been published in Scientific Reports.