Нейросеть научили предсказывать кризисы на фондовом рынке России

Экономисты из ВШЭ разработали нейросетевую модель, способную за сутки до события с точностью более 83% предупредить о приближении краткосрочного фондового кризиса. Модель работает даже на сложных, несбалансированных данных и учитывает не только экономические показатели, но и настроение инвесторов. Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина опубликована в журнале Socio-Economic Planning Sciences.
Как предсказать шторм на фондовом рынке? Знать ответ на этот вопрос хотят финансовые аналитики и инвесторы по всему миру. Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина предлагает оригинальный подход к прогнозированию краткосрочных кризисов на отечественном рынке акций. Созданная ими гибридная модель глубокого обучения, сочетающая три архитектуры: Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM) и Attention (механизм внимания инвесторов), — это первая попытка применить столь сложную структуру к российским биржевым данным.
Авторы проанализировали данные с 2014 по 2024 год, включающие рыночные и макроэкономические показатели (в первую очередь индекс Мосбиржи IMOEX), а также индикаторы настроений инвесторов. Чтобы спрогнозировать вероятность наступления кризиса на ближайшие 1–5 торговых дней, ученым пришлось решить несколько методологических проблем. Во-первых, кризисы на рынке происходят редко (до четверти всех событий), что делает обучающую выборку несбалансированной: есть риск, что модель научится игнорировать редкие сигналы. Во-вторых, поведение инвесторов подчиняется не только объективным экономическим факторам, но и субъективным настроениям, которые трудно формализовать. В ответ на это исследователи разработали составные индексы внутреннего и внешнего инвестиционного настроения, используя метод главных компонент. Эти индексы дополняют традиционные макроэкономические и рыночные переменные, позволяя уловить скрытые эмоциональные сигналы участников торгов на более дальних временных горизонтах прогнозирования.
Тамара Теплова
«Мы представили гибридную модель TCN — LSTM — Attention, сочетающую методы глубинного обучения и механизм внимания. Модель эффективно обрабатывает неравномерные данные и достигает точности 78,70% при прогнозе кризисных событий в день наблюдения и 78,85% на следующий торговый день. Использование месячной повторной тренировки и адаптивных временных окон позволило довести точность до 83,87%. Ключевыми факторами, влияющими на предсказания, оказались биржевые индикаторы (аналог технического анализа), капитализация компаний — эмитентов акций и рыночные курсы валют», — сообщила профессор факультета экономических наук ВШЭ Тамара Теплова.
Разработанная система может стать важным инструментом в арсенале инвесторов, финансовых аналитиков и регуляторов. Она позволяет не просто ретроспективно анализировать кризисные периоды, но заранее и с высокой достоверностью выявлять угрозы на горизонте 1–2 дней. В сочетании с регулярной адаптацией к новым данным такая система может лечь в основу динамической архитектуры мониторинга рисков, адаптированной под специфику российского рынка.
«Работа имеет высокую практическую значимость для национального финансового сектора: она предлагает действенные инструменты для своевременного выявления рыночных потрясений, что особенно актуально для нестабильной макроэкономической среды», — подчеркивает Тамара Теплова.
Исследование выполнено при поддержке Программы фундаментальных исследований НИУ ВШЭ в рамках проекта «Центры превосходства».
Вам также может быть интересно:
ВШЭ ищет новые идеи для ИИ-агентов: стартовал конкурс инициатив
Высшая школа экономики приглашает исследователей и преподавателей представить концепции новых цифровых продуктов на базе искусственного интеллекта. Лучшие проекты получат экспертную и технологическую поддержку. Заявки принимаются до 19 декабря.
В НИУ ВШЭ создали инструмент для оценки сложности текстов на малоресурсных языках
Исследователи Центра языка и мозга НИУ ВШЭ разработали инструмент, позволяющий определить сложность текстов на малоресурсных языках. В первой версии поддерживаются несколько малых языков России: адыгейский, башкирский, бурятский, татарский, осетинский и удмуртский. Это первая подобная разработка, адаптированная специально для этих языков и учитывающая их морфологические и лексические особенности.
В Вышке создан Институт робототехнических систем
Решение об этом принял Ученый совет НИУ ВШЭ. У нового института будет мощная фундаментальная база, он будет сотрудничать с другими профильными подразделениями, вовлекать студентов и аспирантов в исследования и разработки. К каким практическим результатам приведет работа института и как планируется организовать взаимодействие с его индустриальным партнером, «Вышке.Главное» рассказал первый проректор НИУ ВШЭ, директор Института статистических исследований и экономики знаний Леонид Гохберг.
Подведены итоги Конкурса инноваций в образовании — 2025
22 ноября в конгресс-холле Альфа-Банка состоялась церемония награждения финалистов, победителей в номинациях и абсолютного победителя Конкурса инноваций в образовании (КИвО-2025). Он проводится 12-й раз, и сегодня это хорошо известный в образовательном сообществе флагманский проект Высшей школы экономики, объединяющий формальное образование, EdTech и частные инициативы.
От импортозамещения к прорыву: как Россия движется к технологическому суверенитету
Доля импорта в затратах на производство и реализацию продукции в России сократилась почти в два раза с 2021 по 2024 год. Об этом свидетельствуют данные исследования НИУ ВШЭ, представленные на круглом столе, посвященном технологическому суверенитету. Эксперты также обсудили, как перейти от импортозамещения в промышленности к прорыву на глобальных рынках. Мероприятие прошло в рамках Дискуссионного экспертного форума НИУ ВШЭ.
Вышка Онлайн представила документальный фильм о влиянии ИИ на нашу жизнь
27 ноября на всех онлайн-площадках Вышки Онлайн состоялась премьера документального фильма «После промпта» от онлайн-кампуса НИУ ВШЭ. Его авторы исследуют, как искусственный интеллект меняет работу, карьерные траектории и профессиональное развитие специалистов. Это первый видеопроект, полностью реализованный командой онлайн-кампуса НИУ ВШЭ совместно с приглашенным режиссером Ольгой Науменко.
«Показать науку через игру»: в Вышке состоялся фестиваль «Республика ученых»
В середине ноября в атриуме корпуса университета на Покровском бульваре при поддержке Центра академического развития студентов прошел Фестиваль науки НИУ ВШЭ «Республика ученых». Событие помогло студентам познакомиться с различными объединениями исследователей Вышки. В этом году в празднике приняли участие Центр научной интеграции и Центр академического письма, а также студенческие организации, которые представили свою деятельность через интерактивные форматы.
В Национальном форуме ДПО приняли участие свыше 3 тысяч человек
В Высшей школе экономики 20–21 ноября состоялся Национальный форум ДПО. В его работе приняли участие представители вузов, государства, бизнеса, ведущие эксперты в сфере образования и HR. Мероприятия, проходившие в комплексе НИУ ВШЭ в Москве на Покровском бульваре, посетили более 800 человек, а общее число офлайн- и онлайн–участников превысило 3 тысячи.
Ученые обнаружили один из самых долгих случаев ковида
Международная группа исследователей при участии ученых из НИУ ВШЭ изучила необычный образец вируса SARS-CoV-2 у ВИЧ-положительной пациентки. Генетический анализ позволил выявить множественные мутации и установить, что вирус эволюционировал в организме на протяжении 2 лет. Это подтверждает теорию о том, что вирус способен годами оставаться в организме отдельных людей, постепенно накапливать мутации и затем выплескиваться в популяцию. Результаты опубликованы в журнале Frontiers in Cellular and Infection Microbiology.
Восьмой международный онлайн-семинар U4U объединил экспертов из 14 стран
Онлайн-кампус НИУ ВШЭ провел двухдневный международный семинар U4U (Universities for Universities), который традиционно служит площадкой для обмена опытом между университетами в области онлайн-обучения. В этом году событие вышло на глобальный уровень и расширило географию. К обсуждению ключевых вызовов и стратегий развития онлайн-образования присоединились международные эксперты и представители университетов со всего мира. Встреча состоялась в онлайн-формате в середине ноября.


