• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Вышка представила свои разработки и научные достижения в области ИИ

Сбер организовал R&D-день для исследовательских центров в области искусственного интеллекта. Команды Центра ИИ и других подразделений ВШЭ продемонстрировали свои компетенции и обсудили с бизнес-заказчиками перспективные задачи и подходы к их решению в будущих проектах.

Мероприятие открыл Андрей Белевцев, старший вице-президент, руководитель блока «Технологии» Сбера, отметивший большой спрос компании на фундаментальные и прикладные исследования. R&D-день, организованный Сбером, был направлен на выбор ключевых проектов для сотрудничества с университетами в ближайшие годы.

Альберт Ефимов, вице-президент, директор Управления исследований и инноваций Сбера, подчеркнул, что более половины публикаций Сбера в области искусственного интеллекта были созданы в сотрудничестве с центрами искусственного интеллекта. Сотрудничество с университетами, включая НИУ ВШЭ, открывает для Сбера новые технологические возможности. Ведущие исследователи разрабатывают ИИ-технологии в передовых областях науки для решения задач бизнес-заказчиков.

Академические исследователи из НИУ ВШЭ, Сколтеха и Новосибирского государственного университета поделились своими идеями о текущем состоянии и перспективах развития искусственного интеллекта после эпохи больших языковых моделей (LLM). Они отметили, что LLM произвели революцию в обработке естественного языка, но это лишь начало пути.

Алексей Наумов
© Высшая школа экономики

Алексей Наумов, научный руководитель Центра ИИ ВШЭ, выступил с докладом «Управляя генерацией. Где еще искать точки прорыва к AGI?». Он рассказал, как обучение с подкреплением (RL) приближает науку к общему искусственному интеллекту. В 2024 году ученые Центра ИИ ускорили обучение генеративных потоковых сетей с помощью RL. Результаты исследования вошли в 5% лучших публикаций на конференции AISTATS 2024 и были представлены на сессии «Вероятностные методы». Благодаря оптимизации RL ученым удалось получить в 1,6 раза больше разнообразных молекул и белков.

После этого состоялась панельная дискуссия на тему «Что ждет AI после эпохи LLM?», постерная сессия и нетворкинг представителей исследовательских команд с бизнес-заказчиками от экосистемы Сбера.

Алексей Масютин
© Высшая школа экономики

«Практика R&D-дней позволяет обменяться результатами с коллегами из других университетов и, что важно, в неформальной обстановке увидеться с заказчиками, — отметил Алексей Масютин, руководитель Центра ИИ ВШЭ. — Мы благодарим Сбер за такую инициативу и планируем рамку дальнейших совместных исследований».

На постерной сессии был представлен 21 исследовательский проект в области искусственного интеллекта, реализуемый учеными НИУ ВШЭ:

  1. Demonstration-regularized RL (Центр искусственного интеллекта)
  2. Generative flow networks as entropy-regularized RL (Центр искусственного интеллекта)
  3. Diffusion Model in the Space of Language Model Encodings (Центр искусственного интеллекта)
  4. Star-Shaped Denoising Diffusion Probabilistic Models (Центр искусственного интеллекта)
  5. Поиск аномалий в данных в условиях известной физической модели (Институт искусственного интеллекта и цифровых наук ФКН)
  6. Engineering Point Defects in Transition Metal Dichalcogenides for Tailored Material Properties using LLMs (Институт искусственного интеллекта и цифровых наук ФКН)
  7. Фреймворк для предсказания функциональных элементов генома (Центр искусственного интеллекта)
  8. Генеративные модели для предсказания байндеров (Институт искусственного интеллекта и цифровых наук ФКН)
  9. Большие языковые модели и анализ медицинских данных (Институт искусственного интеллекта и цифровых наук ФКН)
  10. Regularized Distribution Matching Distillation (Институт искусственного интеллекта и цифровых наук ФКН)
  11. Texture generation for three-dimensional models (Институт искусственного интеллекта и цифровых наук ФКН)
  12. GeoAI: когда локация имеет значение (Центр геоданных)
  13. Fact-checking for LLM based on web mining (Центр искусственного интеллекта)
  14. Построение графа знаний для конкретной предметной области: генерация и оценка (Международная лаборатория интеллектуальных систем и структурного анализа ФКН, Институт искусственного интеллекта и цифровых наук ФКН)
  15. Автоматизированная коррекция нестандартной орфографии и грамматики  (Центр искусственного интеллекта)
  16. Прорывные технологии обработки данных: машинное обучение для анализа научно-технологических текстов (Институт статистических исследований и экономики знаний)
  17. Как ИИ помогает исследователям выявлять научно-технологические тренды: сочетание преимуществ семантического поиска и больших языковых моделей (Институт статистических исследований и экономики знаний)
  18. Как понимание особенностей языка может сократить технологический разрыв? (Институт статистических исследований и экономики знаний)
  19. Использование внешних знаний в языковых моделях (Международная лаборатория интеллектуальных систем и структурного анализа ФКН)
  20. Система анализа тональности социальных сетей (Международная лаборатория интеллектуальных систем и структурного анализа ФКН)
  21. Технология состояние-зависимой биомагнитной стимуляции мозга в реальном времени (HarPULL) (Центр биоэлектрических интерфейсов)

Вам также может быть интересно:

«Многие хотят создавать продукты на базе ИИ и стать конкурентоспособнее»

В 2024 году на магистерскую онлайн-программу «Искусственный интеллект», реализуемую факультетом компьютерных наук ВШЭ, поступило рекордное количество первокурсников — более 300. Откуда такой высокий интерес к ИИ, как строится обучение и какими новыми компетенциями будут обладать выпускники программы, рассказала ее академический руководитель Елена Кантонистова.

Динамику ESG в мире обсудили на международной конференции по вопросам устойчивого развития в Вышке

Участники форума «ESG Corporate Dynamics: the Challenges for Emerging Capital Markets» обсудили использование ИИ в сфере устойчивого развития, влияние климатической уязвимости на привлечение институциональных инвесторов, тренды ESG-политики в Южной Корее и Китае, разработку интегральной ESG-модели для оценки вероятности дефолта компаний и многие другие вопросы. В работе конференции, организованной факультетом экономических наук ВШЭ, приняли участие более 20 ученых из ведущих университетов Китая, Египта, Малайзии и других стран.

Исследователи из ВШЭ разработали Python-библиотеку для анализа данных движений глаз

Исследовательская группа из Высшей школы экономики разработала Python-библиотеку EyeFeatures, предназначенную для анализа и моделирования данных движений глаз. Инструмент призван облегчить работу ученых и разработчиков, предоставляя им возможность эффективно обрабатывать сложные данные и строить предсказательные модели.

Достижения Вышки в сфере ИИ представили на AIJ

На площадке международной конференции AI Journey состоялась сессия под руководством вице-премьера Дмитрия Чернышенко, посвященная достижениям российских исследовательских центров в области искусственного интеллекта. Руководитель Центра ИИ ВШЭ Алексей Масютин представил ключевые разработки исследователей центра.

Фантастика vs реальность: ВШЭ и Евразийский НОЦ обучили преподавателей Башкортостана работе с ИИ

В начале ноября в Уфе состоялось обучение по программе повышения квалификации «Искусственный интеллект и его применение в научных исследованиях» для преподавателей и ученых Республики Башкортостан. Организаторами программы выступили Центр непрерывного образования ФКН НИУ ВШЭ и Евразийский научно-образовательный центр. Обучение было реализовано в сетевой форме по трем направлениям: гуманитарному, естественно-научному и техническому.

Искусственная революция: как ИИ меняет образование

Искусственный интеллект стремительно ворвался в образовательное пространство и стал помощником и напарником студентов и преподавателей. Сегодня владение ИИ-инструментами становится универсальной компетенцией и требует от педагогов освоения новых навыков и подходов как к учебному процессу, так и к оцениванию успехов студентов.

Ученые НИУ ВШЭ признаны лидерами в сфере развития ИИ

В рамках международной конференции по искусственному интеллекту и машинному обучению AI Journey наградили победителей Национальной премии «Лидеры ИИ — 2024». Лауреатами стали Сергей Самсонов, научный сотрудник Международной лаборатории стохастических алгоритмов и анализа многомерных данных Института искусственного интеллекта и цифровых наук ФКН ВШЭ, и Елена Тутубалина из Института искусственного интеллекта AIRI и Научно-учебной лаборатории моделей и методов вычислительной прагматики ФКН ВШЭ. Еще один ученый Вышки стал финалистом премии.

Обуздать стихию: как ИИ интегрируется в учебный процесс в странах мира

Искусственный интеллект постепенно становится незаменимой частью высшего образования. Его используют и студенты, и преподаватели для снижения объема рутинных задач и расширения своих возможностей. Ограничения и перспективы ИИ рассматриваются в докладе «Начало конца или новой эпохи? Эффекты генеративного искусственного интеллекта (ГИИ) в высшем образовании», который вышел в журнале «Современная аналитика образования» под научной редакцией научного руководителя НИУ ВШЭ Ярослава Кузьминова.

Виртуальный Моцарт, бот «Венчурный капитал» и генерация учебных видео: как в Вышке применяют ИИ

В середине ноября в Вышке состоялся митап, на котором преподаватели, исследователи и административные работники университета представили собственные проекты и поделились опытом использования ИИ-технологий в образовательной и научной деятельности. Встреча прошла в рамках программы повышения квалификации «Искусственный интеллект в образовании и исследованиях».

Названы ключевые тренды в образовании — 2025

Искусственный интеллект и виртуальная реальность все чаще становятся частью образования. Больше половины преподавателей-новаторов готовы поддерживать мультимодальные подходы с использованием ИИ, а каждый третий студент считает, что технологии способны сделать учебу интереснее и удобнее. Такие данные представили Лаборатория инноваций в образовании ВШЭ и холдинг Ultimate Education.