• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Operation of Cellular Networks Found Similar to Bacteria Growth in Petri Dish

Operation of Cellular Networks Found Similar to Bacteria Growth in Petri Dish

© iStock

Scientists at HSE University have discovered an approach to analysing mobile communication quality by applying the principles of surface physics

Scientists at the HSE Laboratory for Computational Physics have developed a new model for analysing communication networks that can significantly enhance the speed of mobile communications. To achieve this, the researchers used computational physics methods and phase transition models. It turns out that the functioning of cellular networks is in many ways similar to the growth of surfaces in physics. The study was performed using the HPC cHARISMa cluster at HSE University. The study findings have been published in Frontiers in Physics.

Mobile networks enable making calls, sending messages, and using the internet. However, for these networks to function smoothly, it is essential to be able to simulate their operation. Simulations help predict how a network will behave in various situations, including extreme conditions, and identify areas for improvement.

One of the key tools for studying mobile networks is parallel discrete-event simulation (PDES). This method is based on splitting a system into numerous subsystems to enable parallel modelling of various processes. Each of these subsystems has its own local virtual time, which does not align with the actual time. When the local times significantly diverge from each other, leading to process desynchronisation, the network may experience slower operation or errors. Lev Shchur and Liliia Zhukova, scientists at HSE MIEM, studied the evolution of local virtual time profiles in a cellular communication model and discovered similarities with the surface growth processes in physics.

Liliia Zhukova

Liliia Zhukova

Associate Professor, School of Applied Mathematics, HSE Tikhonov Moscow Institute of Electronics and Mathematics

After conducting a thorough analysis of the processes, we observed similarities between changes in local time in cellular communication modelling and alterations in a surface profile as it grows, eg through spray application, as the time only progresses forward. Surface physics is a well-established field with equations that facilitate analysis and modelling of various processes. We have transferred knowledge from this domain to computing technologies and constructed a model simulating the evolution of local virtual time profiles.

By comparing their findings with a model of a real mobile network, the scientists have found that the proposed method enables accurate prediction of critical moments when the network's performance may deteriorate, so that issues can be addressed proactively, leading to improved network operation.

Lev Shchur

Lev Shchur

Head, Laboratory for Computational Physics, HSE Tikhonov Moscow Institute of Electronics and Mathematics

With the help of computational physics algorithms, it becomes possible to determine the moment when local time ceases to progress, referred to in physics as the phase transition point. We can describe the events occurring around it and anticipate potential communication disruptions or alterations in load distribution at a cellular communication station. With this model, we can provide the industry with better tools for planning, constructing, and operating mobile networks.

The researchers emphasise that understanding the mechanics of parallel computing in actual high-load networks will facilitate faster and more efficient simulation of mobile networks and other systems employing similar calculations across various domains such as engineering, computer science, economics, and transportation.

See also:

Esports Players Play Better Online

In competitions, esports players, like other athletes, face stress and show worse results due to pressure. A substantial decrease takes place in the performance of esports players during overtime. This effect, however, is significantly mitigated in online competitions compared to live events—the difference can reach 30%. A study by a team of authors from HSE University’s Moscow and Perm campuses and European University Viadrina (Germany) explores the phenomenon of choking under pressure within the context of esports. The study was published in the Journal of Economic Behavior & Organization.

Analysing Genetic Information Can Help Prevent Complications after Myocardial Infarction

Researchers at HSE University have developed a machine learning (ML) model capable of predicting the risk of complications—major adverse cardiac events—in patients following a myocardial infarction. For the first time, the model incorporates genetic data, enabling a more accurate assessment of the risk of long-term complications. The study has been published in Frontiers in Medicine.

A New Tool Designed to Assess AI Ethics in Medicine Developed at HSE University

A team of researchers at the HSE AI Research Centre has created an index to evaluate the ethical standards of artificial intelligence (AI) systems used in medicine. This tool is designed to minimise potential risks and promote safer development and implementation of AI technologies in medical practice.

Smoking Habit Affects Response to False Feedback

A team of scientists at HSE University, in collaboration with the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, studied how people respond to deception when under stress and cognitive load. The study revealed that smoking habits interfere with performance on cognitive tasks involving memory and attention and impairs a person’s ability to detect deception. The study findings have been published in Frontiers in Neuroscience.

Russian Physicists Determine Indices Enabling Prediction of Laser Behaviour

Russian scientists, including researchers at HSE University, examined the features of fibre laser generation and identified universal critical indices for calculating their characteristics and operating regimes. The study findings will help predict and optimise laser parameters for high-speed communication systems, spectroscopy, and other areas of optical technology. The paper has been published in Optics & Laser Technology.

Children with Autism Process Auditory Information Differently

A team of scientists, including researchers from the HSE Centre for Language and Brain, examined specific aspects of auditory perception in children with autism. The scientists observed atypical alpha rhythm activity both during sound perception and at rest. This suggests that these children experience abnormalities in the early stages of sound processing in the brain's auditory cortex. Over time, these abnormalities can result in language difficulties. The study findings have been published in Brain Structure and Function.

Smartphones Not Used for Digital Learning among Russian School Students

Despite the widespread use of smartphones, teachers have not fully integrated them into the teaching and learning process, including for developing students' digital skills. Irina Dvoretskaya, Research Fellow at the HSE Institute of Education, has examined the patterns of mobile device use for learning among students in grades 9 to 11.

Working while Studying Can Increase Salary and Chances of Success

Research shows that working while studying increases the likelihood of employment after graduation by 19% and boosts salary by 14%. One in two students has worked for at least a month while studying full time. The greatest benefits come from being employed during the final years of study, when students have the opportunity to begin working in their chosen field. These findings come from a team of authors at the HSE Faculty of Economic Sciences.

Beauty in Details: HSE University and AIRI Scientists Develop a Method for High-Quality Image Editing

Researchers from theHSE AI Research Centre, AIRI, and the University of Bremen have developed a new image editing method based on deep learning—StyleFeatureEditor. This tool allows for precise reproduction of even the smallest details in an image while preserving them during the editing process. With its help, users can easily change hair colour or facial expressions without sacrificing image quality. The results of this three-party collaboration were published at the highly-cited computer vision conference CVPR 2024.

HSE Scientists Have Examined Potential Impact of Nuclear Power on Sustainable Development

Researchers at HSE University have developed a set of mathematical models to predict the impact of nuclear power on the Sustainable Development Index. If the share of nuclear power in the global energy mix increases to between 20% and 25%, the global Sustainable Development Index (SDI) is projected to grow by one-third by 2050. In scenarios where the share of nuclear power grows more slowly, the increase in the SDI is found to be lower. The study has been published in Nuclear Energy and Technology.