• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Искусственный интеллект обнаружил новые космические аномалии

Искусственный интеллект обнаружил новые космические аномалии

© iStock

Международная команда проекта SNAD, куда входит доцент факультета физики НИУ ВШЭ Матвей Корнилов, обнаружила 11 аномалий, 7 из которых — кандидаты в сверхновые. Исследования проводились на цифровых снимках северного неба за 2018 год, для поиска использовался метод ближайших соседей на основе K-мерных деревьев. Автоматизировать поиск аномалий позволили методы машинного обучения. Исследование опубликовано в журнале New Astronomy.

Большая часть астрономических открытий основана на наблюдениях и последующих расчетах. Еще в XX веке количество наблюдений было невелико, однако с вводом в строй широкопольных астрономических обзоров неба объемы получаемых данных многократно возросли. Например, Zwicky Transient Facility (ZTF) — широкопольный обзор северного неба — генерирует ∼1,4 ТБ данных за ночь наблюдений, а его каталог содержит миллиарды объектов. Обрабатывать такое количество данных вручную сложно и дорого, поэтому команда проекта SNAD, объединяющего ученых из России, Франции и США, решала задачу автоматизации этого процесса.

Чтобы больше узнать об астрономических объектах, ученые анализируют их кривые блеска — зависимости блеска объекта от времени. Сначала регистрируют вспышку на небе, затем фиксируют, как ее блеск эволюционирует: становится более ярким, ослабевает или совсем гаснет. Для исследования ученые взяли миллион кривых блеска реальных объектов из каталога Zwicky Transient Facility за 2018 год, а также составили 7 симулированных кривых блеска объектов исследуемых типов. Всего учитывалось около 40 свойств, например амплитуда яркости объекта и периодичность. 

Константин Маланчев

«Мы описали свойства симуляций набором характеристик, который ожидали увидеть у реальных астрономических тел. Среди миллиона объектов мы искали сверхмощные сверхновые, сверхновые типа Iа, сверхновые II типа и события приливного разрыва, — объясняет один из авторов статьи постдок в университете Иллинойса в Урбане—Шампейне Константин Маланчев.  —  Такие классы объектов мы называем аномалиями. Они встречаются очень редко и их свойства малоизучены, либо это интересные объекты для более подробного исследования».

Затем данные кривых блеска реальных объектов сопоставляли с симуляциями с помощью метода K-мерных деревьев. K-мерное дерево — специальная геометрическая структура данных, которая позволяет разбить пространство на меньшие части, рассекая его  гиперплоскостями, плоскостями, прямыми или точками. Разбиение используют для сужения диапазона поиска в K-мерном пространстве, где ищут объект со свойствами, максимально похожими на те, что описаны в 7 симуляциях.

В результате на каждую из 7 симуляций было найдено 15 наиболее похожих, реально существующих объектов из базы ZTF. Всего получилось 105 объектов. Их исследователи анализировали вручную и проверяли, являются ли они аномалиями.  После ручной проверки подтвердились 11 аномалий, 7 из них — кандидаты в сверхновые, а еще 4 —  активные ядра галактик, в которых могут происходить события приливного разрыва. 

Мария Пружинская

«Это очень хороший результат, — комментирует один из авторов статьи Мария Пружинская, научный сотрудник Государственного астрономического института имени П.К. Штернберга. — Причем у нас получилось обнаружить не только уже открытые редкие объекты, но и несколько новых, которые были пропущены астрономическим сообществом. Это значит, что можно отладить существующие алгоритмы поиска, чтобы такие объекты больше не пропускать».

Исследование показало, что данный метод действительно эффективен, при этом довольно прост в реализации. Предложенная методика поиска объектов определенного типа универсальна и может быть применена для открытия не только редких типов сверхновых, но и других интересных астрономических объектов. 

Матвей Корнилов

«Астрономические или астрофизические явления, которые не были обнаружены учеными ранее, тоже являются аномалиями, — поясняет доцент факультета физики НИУ ВШЭ Матвей Корнилов. — Наблюдательные проявления таких объектов должны отличаться от свойств уже известных объектов. В будущем мы планируем применять нашу методику для открытия новых классов объектов».

Вам также может быть интересно:

Виртуальный Моцарт, бот «Венчурный капитал» и генерация учебных видео: как в Вышке применяют ИИ

В середине ноября в Вышке состоялся митап, на котором преподаватели, исследователи и административные работники университета представили собственные проекты и поделились опытом использования ИИ-технологий в образовательной и научной деятельности. Встреча прошла в рамках программы повышения квалификации «Искусственный интеллект в образовании и исследованиях».

Названы ключевые тренды в образовании — 2025

Искусственный интеллект и виртуальная реальность все чаще становятся частью образования. Больше половины преподавателей-новаторов готовы поддерживать мультимодальные подходы с использованием ИИ, а каждый третий студент считает, что технологии способны сделать учебу интереснее и удобнее. Такие данные представили Лаборатория инноваций в образовании ВШЭ и холдинг Ultimate Education.

Студенты Вышки выиграли международный этап «Цифрового прорыва»

В начале ноября в Калининграде прошел международный этап хакатона «Цифровой прорыв. Сезон: Искусственный интеллект». В нем приняли участие 203 команды в составе 1569 человек, и среди них — студенты факультета компьютерных наук ВШЭ, призеры всероссийского этапа. Они соревновались в решении задач от партнеров хакатона — РЖД, Media Wise, «Атома», «Росатома», «Силы» и других организаций.

«Можно что-то сделать? Или меня отчислят?»: ИИ-помощники в образовании

Искусственный интеллект может значительно облегчить жизнь студентов и преподавателей университетов. Например, он способен автоматизировать некоторые учебные процессы, а также составить прогноз возможностей трудоустройства выпускников.

В НИУ ВШЭ разработан инструмент для контроля ИИ-технологий в медицине

Группа исследователей из Центра искусственного интеллекта НИУ ВШЭ разработала индекс для определения уровня этичности систем искусственного интеллекта (ИИ) в медицине. Инструмент предназначен для минимизации потенциальных рисков, обеспечения безопасной разработки и внедрения ИИ-технологий в медицинскую практику.

Драйвер прогресса и статья доходов: роль университетов в трансфере технологий

В современном мире необходим эффективный трансфер социально-экономических и гуманитарных знаний в реальный сектор экономики и госуправление. Решающую роль в этом играют университеты. У них есть возможность объединять различные коллективы и в партнерстве с государством и бизнесом разрабатывать и совершенствовать передовые технологии.

ИНФОТЕХ-2024: «понять перспективы и ограничения использования ИИ в образовании»

В конце октября в рамках XVII Тюменского цифрового форума информационных технологий «ИНФОТЕХ-2024» прошел круглый стол «Эксперименты с ИИ в образовании». Эксперты Высшей школы экономики, Московского городского педагогического университета, Уральского федерального университета и Тюменского государственного университета обсудили практический опыт разработки и внедрения технологий ИИ в образовательный процесс, обозначили основные вызовы, связанные с быстрым развитием образовательных решений на базе ИИ.

Fall into ML 2024: взгляд в будущее машинного обучения

25–26 октября в Москве состоялась конференция Fall into ML, организованная Институтом искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ совместно с Центром ИИ при поддержке титульного партнера — Сбера. На протяжении двух дней ведущие специалисты в области искусственного интеллекта обсуждали перспективы развития фундаментальных технологий ИИ.

ВШЭ и «Яндекс» представили доклад об интеграции искусственного интеллекта в высшее образование

Высшая школа экономики и «Яндекс Образование» подготовили совместный доклад «Искусственный интеллект в образовании». В нем проанализированы ведущие мировые практики, раскрывающие потенциал технологий искусственного интеллекта (ИИ) в образовательной сфере. Доклад представляет собой карту с кейсами университетов разных стран, уже сегодня применяющих ИИ. Цель проекта — помочь российским вузам внедрять ИИ, опираясь на опыт других университетов.

Практика лицензирования разработок НИУ ВШЭ отмечена премией в области корпоративных инноваций GIA

На церемонии вручения премии GIA совместный проект Центра искусственного интеллекта НИУ ВШЭ и АО «Новое сервисное бюро» получил награду в номинации «Трансфер технологий». Это стало плодом интенсивной работы университетского Центра трансфера технологий и научных сотрудников вместе с индустриальным партнером.